Законов мироздания

 

ЗЕЛЕНАЯ РЕВОЛЮЦИЯ

МАКСИМАЛЬНАЯ

УСТОЙЧИВАЯ

^ ТЕОРИЯ РАВНОВЕСИЯ

МАКАРТУРА—

Экосистему можно вывести из состояния равновесия многими способами. Обычно это бывает пожар, наводнение или засуха. После такого нарушения равновесия новая экосистема сама себя восстанавливает, и этот процесс носит регулярный характер и повторяется в самых разных ситуациях. Что же происходит в нарушенной экосистеме? На месте нарушения определенные виды и вся экосистема развиваются таким образом, что порядок появления этих видов одинаков для схожих нарушений и схожих ареалах. В этой последовательной смене одних видов другими и заключается суть экологической сукцессии.

Например, в большинстве северо-восточных штатов США в XVIII веке земли, занятые лесами, были расчищены и на этих территориях были построены фермы, в XIX веке продолжалась обработка этих земель, а в ХХ веке фермы были заброшены и участки вновь стали превращаться в леса. Растения, с течением времени заселившие поля, появлялись в определенной, уже известной и строго повторяющейся последовательности. В первый год вырастали однолетние сорняки и одиночные сеянцы деревьев. В течение нескольких последующих лет происходило заселение определенными видами (это так называемые «пионерные виды», или, выражаясь более научно, ранние сукцессионные виды), которые начинали преобладать. Типичный пионерный вид — сосна Вей-мутова. Она растет очень быстро, и ее семена распространяются на большую территорию. В течение нескольких десятилетий пионерные виды образовывали густой лес.

Следующий этап — появление деревьев, которые хорошо растут в тени пионерных видов, — например, кленов. Через полвека пионерные деревья становились зрелыми и постепенно погибали. Их семена уже не могли прорастать под покровом леса, и состав популяции деревьев сдвигался в сторону медленно растущих новичков — так называемых поздних сукцессионных видов. В конце концов весь лес стал состоять из этих видов деревьев, что и наблюдают каждый год осенью жители Новой Англии, когда листья деревьев меняют окраску и лес приобретает огненный цвет, характерный для кленов.

Такой пример быстрорастущих пионеров с последующим заселением медленно растущими видами наблюдается во многих экосистемах. Например, на недавно образованных прибрежных песчаных дюнах первой появляется песчаный тростник. Эта трава помогает укрепить дюны так, чтобы в них смогли укорениться виды-преемники (вначале кустарники, а затем и деревья).

Изучая сукцессию в экосистемах, экологи выделили три механизма ее действия.

Содействие. Появившиеся в новой экосистеме пионерные виды облегчают другим видам последующее заселение. Например, после отступления ледника первыми появляются лишайники и некоторые растения с поверхностными корнями — то есть виды, способные выжить на бесплодной, бедной питательными вещест-

вами почве. По мере отмирания этих растений происходит нарастание слоя почвы, что дает возможность укорениться поздним сукцессионным видам. Аналогично ранние деревья дают тень и убежище для ростков поздних сукцессионных деревьев.

Сдерживание. Иногда пионерные виды создают условия, усложняющие или вообще делающие невозможным появление поздних сукцессионных растений. Когда около океана появляются новые поверхности (например, в результате строительства бетонных пирсов или волнорезов), они быстро обрастают пионерными видами водорослей, и другие виды растений просто вытесняются. Это вытеснение происходит очень легко, поскольку пионерный вид воспроизводится крайне быстро и вскоре покрывает все доступные поверхности, не оставляя места для последующих видов. Пример активного сдерживания — появление горчака, азиатского растения, распространившегося по американскому Западу. Горчак в значительной мере защелачивает почву, в которой растет, что делает ее непригодной для многих диких трав.

Сосуществование. Наконец, пионерные виды могут вообще не оказывать на последующие растения никакого воздействия — ни полезного, ни вредного. В частности, это происходит, если разные виды используют разные ресурсы и растут независимо друг от

друга (см. дифференциальное использование ресурсов).

Важно понимать, что конечное состояние леса или дюны экологически неустойчиво (см. рав но в ес ие в при р о де). Зрелый лес обычно характеризуется нулевым суммарным приростом органических веществ. Это означает, что с течением времени из-за потери веществ под воздействием таких процессов, как эрозия, лес постепенно начнет погибать. Кстати, большинство лесов обладают максимальной продуктивностью в течение первой половины сукцес-сионного цикла.

Эксперимент Ван Гельмонта

Растения добывают биомассу не из почвы

1779, 1905

эксперимент ван гельмонта

ФОТОСИНТЕЗ

^ КРУГОВОРОТ УГЛЕРОДА В ПРИРОДЕ

ТЕОРИЯ СЦЕПЛЕНИЯ-НАТЯЖЕНИЯ

Цвет жизни на нашей планете — зеленый, потому что зеленые молекулы хлорофилла в растениях, которые составляют основу любой жизни и превращают энергию падающего солнечного света в материалы, из которых построены живые существа. Можно только удивляться тому, что в прошлые века люди почти не интересовались механизмом превращения этой энергии — процессом, который мы теперь называем фотосинтезом. Так уж сложилось, что закономерности движения планет и звезд стали понятны людям задолго до того, как у них появились малейшие представления о роли травы у них под ногами.

Первое серьезное исследование механизма роста растений провел фламандский аристократ Ян Баптист Ван Гельмонт. Перед тем как посадить дерево в горшок, он взвесил в нем землю. В течение нескольких лет Ван Гельмонт поливал дерево, а затем снова взвесил дерево и землю и обнаружил, что вес дерева увеличился на 74 кг, а вес почвы при этом уменьшился всего граммов на сто. Стало ясно, что почва не является источником материала для построения растущего дерева.

На самом деле Ван Гельмонт сделал неверный вывод из своего открытия — он утверждал, что дополнительный вес получен из воды. Оставалось два столетия до представления о том, что углерод дерева образуется в результате превращений атмосферного углекислого газа, и еще одно столетие до понимания молекулярного механизма фотосинтеза. Тем не менее Ван Гельмонт не оставил ни у кого сомнения в том, что материал, называемый нами биомассой, поступает не из почвы, а из другого источника, и это открытие позднее стало основой наших представлений о роли растений.

^ яН БАПТИСТ ВАН ГЕЛЬМОНТ (Jan Baptista Van Helmont, 1579-1644) — фламандский врач и химик. Родился в Брюсселе в аристократической семье. Изучал медицину и химию в Католическом университете Лувейна, но не стал получать ученой степени, а занялся собственными исследованиями. Он впервые использовал слово «газ» для описания состояния материи и установил четыре вида газов — это известные нам сегодня монооксид углерода (угарный газ), диоксид углерода (углекислый газ), закись азота (веселящий газ) и метан.

Во времена Ван Гельмонта химия была молодой и быстро развивающейся наукой, в которой еще сильно ощущалось влияние алхимии. Хотя он не питал безмерного почтения к считавшимся неприкосновенными древним учениям, он все же верил в философский камень. Однако его опыт с растущей ивой показывает, что Ван Гельмонт понимал ценность эксперимента. А однажды он даже вступил в конфликт с церковью, подвергнув сомнению распространенное поверье о том, что рану можно вылечить, врачуя нанесшее ее оружие.

Эксперимент

Миллера — Юри

Молекулы, необходимые для жизни, могли возникать в ходе химических реакций на заре развития Земли

^ Х1Х-ХХ • БИОЛОГИЧЕСКИЕ МОЛЕКУЛЫ

1859 • ТЕОРИЯ ЭВОЛЮЦИИ

нач. • БЕЛКИ 1950-х

1953 ^ ЭКСПЕРИМЕНТ МИЛЛЕРА—ЮРИ

4,5 миллиарда лет назад, когда возникла Земля, она представляла собой раскаленный безжизненный шар. Сегодня же на ней в изобилии встречаются разные формы жизни. В связи с этим возникает вопрос: какие изменения происходили на нашей планете с момента ее образования и по сегодняшний день и главное — как на безжизненной Земле возникли молекулы, образующие живые организмы? В 1953 году в Чикагском университете был поставлен эксперимент, сегодня ставший классическим. Он указал ученым путь к ответу на этот фундаментальный вопрос.

В 1953 году Гарольд Юри был уже Нобелевским лауреатом, а Стэнли Миллер — всего лишь его аспирантом. Идея эксперимента Миллера была простой: в полуподвальной лаборатории он воспроизвел атмосферу древнейшей Земли, какой она была по мнению ученых, и со стороны наблюдал за тем, что происходит. При поддержке Юри он собрал простой аппарат из стеклянной сферической колбы и трубок, в котором испарявшиеся вещества циркулировали по замкнутому контуру, охлаждались и вновь поступали в колбу. Миллер заполнил колбу газами, которые, по мнению Юри и русского биохимика Александра Опарина (1894-1980), присутствовали в атмосфере на заре формирования Земли, — водяным паром, водородом, метаном и аммиаком. Чтобы сымитировать солнечное тепло, Миллер нагревал колбу на бунзеновской горелке, а чтобы получить аналог вспышек молний — вставил в стеклянную трубку два электрода. По его замыслу материал, испаряясь из колбы, должен был поступать в трубку и подвергаться воздействию электрического искрового разряда. После этого материал должен был охлаждаться и возвращаться в колбу, где весь цикл начинался вновь.

После двух недель работы системы жидкость в колбе стала приобретать темный красно-коричневый оттенок. Миллер провел анализ этой жидкости и обнаружил в ней аминокислоты — основные структурные единицы белков. Так у ученых появилась возможность изучать происхождение жизни с точки зрения основных химических процессов. Начиная с 1953 года с помощью усложненных вариантов эксперимента Миллера—Юри, как стали его с тех пор называть, были получены все виды биологических молекул — включая сложные белки, необходимые для клеточного метаболизма, и жировые молекулы, называемые липидами и образующие мембраны клетки. По-видимому, тот же результат мог бы быть получен и при использовании вместо электрических разрядов других источников энергии — например, тепла и ультрафиолетового излучения. Так что почти не остается сомнений в том, что все компоненты, необходимые для сборки клетки, могли быть получены в химических реакциях, происходивших на Земле в древнейшие времена.

Ценность эксперимента Миллера—Юри состоит в том, что благодаря ему стало понятно, как вспышки молний в атмосфере древней Земли за несколько сот миллионов лет вызывали обра-

зование органических молекул, попадавших вместе с дождем в «первичный бульон» (см. также теория эволюции ). Не установленные до сих пор химические реакции, происходящие в этом «бульоне», могли привести к образованию первых живых клеток. В последние годы возникают серьезные вопросы по поводу того, как развивались эти события, в частности подвергается сомнению присутствие аммиака в атмосфере древнейшей Земли. Кроме того, предложено несколько альтернативных сценариев, которые могли привести к образованию первой клетки, начиная от ферментативной активности биохимической молекулы РНК и кончая простыми химическими процессами в океанских глубинах. Некоторые ученые даже предполагают, что происхождение жизни имеет отношение к новой науке о сложных адаптивных системах и что не исключено, что жизнь — это неожиданное свойство материи, возникающее скачкообразно в определенный момент и отсутствующее у ее составных частей. В наши дни эта область знаний переживает период бурного развития, в ней появляются и проходят проверку различные гипотезы. Из этого водоворота гипотез должна появиться теория о том, как же возникли наши самые далекие предки.

^ СТЭНЛИ ЛЛОЙД МИЛЛЕР (Stanley Lloyd Miller, р. 1930) — американский химик. Родился в Окленде, штат Калифорния, получил образование в Калифорнийском университете в Беркли и в Чикагском университете. Начиная с 1960 года профессиональная деятельность Миллера была в основном связана с Калифорнийским университетом в Сан-Диего, где он занимал должность профессора химии. За работу по проведению эксперимента Миллера—Юри был удостоен звания научного сотрудника в Калифорнийском технологическом институте.

^ ГАРОЛЬД КЛЕЙТОН ЮРИ (Harold Clayton Urey, 1893-1981) — американский химик. Родился в Уолкертоне, штат Индиана, в семье священника. Изучал зоологию в университете штата Монтана и получил докторскую степень по химии в Калифорнийском университете в Беркли. Впервые применил физические методы в химии и в 1934 году был удостоен Нобелевской премии в области химии за открытие дейтерия — тяжелого изотопа водорода. Позднее его деятельность была связана в основном с изучением различий в скорости химических реакций при использовании разных изотопов.

Эксперимент Херши — Чейз

ДНК кодирует

наследственную

информацию

^ ЭКСПЕРИМЕНТ ХЕРШИ—ЧЕЙЗ

днк имеет долгую и интересную историю. После того как в 1869 году ее впервые выделил Иоганн Мишер (Johann Miescher, 1844-95), она несколько десятилетий терпеливо ожидала своего часа в относительной безвестности. В 1914 году немецкий химик обнаружил, что ДНК окрашивается красной краской, но счел это открытие настолько незначительным, что не публиковал его в течение 10 лет. Однако позднее это окрашивание было использовано для того, чтобы установить факт присутствия ДНК во всех клетках и ее характерную локализацию в хромосомах. В 1920-е годы американский биохимик российского происхождения Фибус Левин (Phoebus Levene, 1869-1940), проводивший анализ ДНК, определил основные «кирпичики», из которых строится ДНК. Это фосфатная группа, сахар и молекулы четырех типов — азотистые основания. Он пришел к правильному выводу о том, что молекула ДНК построена из структурных единиц (так называемых нуклео-тидов), собранных из комбинаций этих трех компонентов.

Начиная с 1940-х годов два микробиолога, которые бежали в США из Европы, оказавшейся под властью Адольфа Гитлера, — итальянец Сальвадор Лурия (Salvador Luria, 1912-91) и американец немецкого происхождения Макс Дельбрюк (Max Delbn>ck, 1906-81) — разработали важнейшую методику, обогатившую генетические исследования. Они изучали свойства группы вирусов-бактериофагов («пожирателей бактерий»). Любая из известных бактерий является добычей хотя бы для одного из этих вирусов, которые состоят из ДНК, окруженной белковой оболочкой. Бактериофагов легко хранить в лаборатории, а их действие на клетку-хозяина поистине поражает воображение — за какие-то несколько минут после заражения бактерия-хозяин оказывается взломанной и производит на свет не меньше сотни идентичных копий исходного вируса. Очевидно, что что-то в вирусе передает генетическую информацию потомкам, но что — белки или ДНК?

Ответ на этот вопрос дал эксперимент Херши и Чейз. Методика, использованная Алфредом Херши и его коллегой Мартой Коулз Чейз (Martha Cowles Chase, р. 1927), проста в описании. Они выращивали две группы бактерий: одну в среде, содержащей радиоактивный фосфор-32, другую — в среде с радиоактивной серой-35. Бактериофаги, добавленные в среду с бактериями и атаковавшие их, поглощали эти радиоактивные маркеры. Чтобы понять происходившие далее события, надо знать, что фосфор входит в состав ДНК (он находится в фосфатных группах в ядре), но отсутствует в белковой оболочке вируса. Сера же, наоборот, входит в состав белка, но отсутствует в ДНК. Таким образом, пара радиоактивных маркеров позволяла разграничить роли двух компонентов вируса в его репродукции.

После этого ученые «натравливали» на бактерии две группы вирусов — с меченой ДНК и меченым белком. Не дожидаясь завершения процесса инфицирования, бактерии отделяли от остального материала с помощью центрифуги, а затем выявляли присутствие

радиоактивной метки. Результаты говорили сами за себя: в бактериях был обнаружен фосфор-32. а сера-35 оставалась в среде. Поскольку размножение вирусов происходит внутри бактерий, куда белки не проникают, было ясно, что это размножение может быть обусловлено только ДНК.

Сегодня нам известен механизм этого процесса: вирус прикрепляется к бактерии и вводит в нее вирусную ДНК, оставляя снаружи белковую оболочку. Вирусная ДНК встраивается в бактериальную ДНК и «переключает» генетический аппарат бактерии, заставляя его работать на себя для создания многочисленных копий вируса. После того как ресурсы бактерии будет исчерпаны, клетка разрушается, высвобождая новое поколение «штампованных» вирусов. Эксперимент Херши—Чейз со всей очевидностью показал, что гены размещены в молекуле ДНК, и это главный принцип современной науки.

 



  • На главную